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Abstract

Encountering a freak wave remains one of the most horrible visions for a ship master. Until now the
mechanisms which underlie large rolling and subsequent capsizing due to a rogue wave are only
partly disclosed.

In the framework of the German research project ROLL-S which is funded by the German Federal
Ministry of Research and Education (BMBF) nine partners are cooperating on the investigation of
large rolling and capsizing mechanisms covering fields like numerical analysis and simulation,
validation, and evaluation of capsizing risk.

The project part presented here deals with the validation of numerical tools for the analysis of large
rolling and capsizing. The main goal is the implementation of a sophisticated capsizing test
procedure. For providing useful data for the analysis of the capsizing process as well as for the
validation of numerical methods, exact correlation of wave excitation and ship rolling is
indispensable.

All wave trains are tailored for the specific purpose of each capsizing test and generated in the
model tank. Unusual wave trains like regular waves followed by a freak wave and special wave
groups within a defined random sea as well as realistic wave scenarios have been generated.

The parameters of the model seas are systematically varied to investigate the ship model response
with regard to metacentric height, model velocity, and course angle for different ship types. The
wave elevation at the position of the ship model in time and space is calculated (and controlled by
registrations during model tests) in order to relate wave excitation to the resulting roll motion.
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Figure 1: Rogue wave estimated at 60 feet moving toward ship in the Gulf Stream off Charleston,
South Carolina, with light winds of 15 knots (picture taken fromhttp : /www.mpc.ncep.noaa.gov/).

1. INTRODUCTION

Encountering a freak wave such as shown in
Fig. 1 remains one of the most horrible visions
for a ship master. Until now the mechanisms
which underlie large rolling and subsequent
capsizing due to a rogue wave are only partly
disclosed. Within the last decade, more than
hundred large tankers and container ships have
been lost in severe weather conditions, some of
them due to the interaction with giant waves or
dangerous wave groups causing large rolls
angles [8], [11]. Recent incidents like the
particular average of the German cruise liner
Bremen [16] illustrate the fatal risk of freak
waves and document the importance of detailed
knowledge of the processes leading to large roll
angles and capsizing. Therefore numerous
research projects deal with the hydrodynamic
analysis of wave/ structure interaction and the
wave itself.

In the framework of the German research
project ROLL-S which is funded by the
German Federal Ministry of Research and
Education (BMBF) nine partners are
cooperating on the investigation of large rolling
and capsizing mechanisms covering fields like
numerical analysis and simulation, validation,
and evaluation of capsizing risk: Flensburg
Shipyard (FSG), Gerhard Mercator University
in Duisburg, German Lloyd, Hamburg Ship
Model Basin (HSVA), MTG Marinetechnik

GmbH, Seacos, Technical University Berlin
(TUB), and Technical University Hamburg-
Harburg.

The project part presented here deals with the
validation of numerical tools for the analysis of
large rolling and capsizing. The main goal is
the implementation of a sophisticated capsizing
test procedure. Presently the following aims
have been achieved:

* Fully automated motion measurement of a
free running ship model at HSVA [14]

* Improvement of wave generation techniques:

— Adaptation and implementation for the
linear wave generation technique at HSVA

— Further development and application of the
non-linear technique for the generation of
high transient wave packets at HSVA.

— Non-linear transformation of design wave
sequences from stationary wave probes to the

moving ship model (moving reference frame)

— Generation of complex deterministic wave
scenarios for capsizing tests

* Evaluation of capsizing test results
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2. CONCEPT OF COMPUTER
CONTROLLED CAPSIZING TESTS

Analyzing the process of large rolling and
capsizing has to consider the following wave
characteristics:

* extreme wave height and wave steepness
* wave groupiness
* propagation velocity and direction

Unfavorable phase relations of wave
components as well as detrimental wave/
structure interactions lead to dangerous
situations such as

* loss of stability at the wave crest
* resonant excitation, esp. parametric rolling
* broaching due to a loss of course stability.

Analysis of these complex, non-linear
mechanisms puts high demands on the
capsizing test set up and procedure:

 exact correlation of cause (wave excitation)
and reaction (ship motion)

*  reproducibility,  high
measurement and control units
* deterministic course of test events.

accuracy  at

These demands have been realized by a
sophisticated test procedure at HSVA [14]. Fig.
2 shows the principle test configuration for
computer controlled sea-keeping tests.

Three  main
coordinated:

system  components  are

 wave maker

* towing carriage (including the horizontal
carriage)

* ship model.

In head seas, the ship is positioned at the side
wall of the tank’s end, opposite to the wave
maker position. In seas from astern, the ship
model has to wait close to the wave maker until

a defined sequence of the wave train has
passed.

Figure 2: Configuration for
controlled sea-keeping tests at HSVA.

computer

As illustrated in Fig. 3 the test procedure starts
with the definition of test parameters such as
wave frequency o (either as single frequency
or an entire band/range), a characteristic wave
height (e. g. the maximum wave crest elevation
Cmax) and the target position of the ship
encountering the tailored wave train, x., related
to the position of the maximum wave elevation
Xc. These parameters are feeded into both the
wave generation program and the test
simulation program. As a first step the control
signals for the flaps of the wave maker are
calculated, 1. e. flap angles as time series.
Preprocessing includes the calculation of the
encounter point in time and space where the
ship meets the wave train under defined
conditions. The software tool ”"WaveShipSim”
returns the time t. at which the ship will reach
the encounter position x. (depending on the
target ship velocity Lyg and course p).

The two-paddle wave maker generates the
specified wave train which has been selected
for an individual test. The model starts to sail
through the tank in such a way that it reaches
the encounter position at the required time step.
For keeping the given parameters constant, the
propulsion is controlled over the entire run.
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The ship moves in parallel with the tank side
wall at a required minimum distance.
Registration starts by setting the desired
course.
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Figure 3: Computer controlled capsizing test
procedure.

The ship’s course is controlled by the master
computer by telemetry which commands a Z-
manoeuvre at constant course angle and model
velocity. These test parameters as well as the
model sea parameters are varied according to
the metacentric height, GM, of the model, the
expected rolling mode and occurrence of
resonance. Ship motions in six degrees of
freedom are registered precisely by computer
controlled guidance of both, the towing and the
horizontal carriage: During the entire test run,
the ship model stays in the field of vision of the
optical system line cameras. Additionally, the
wave train is measured at several fixed
positions of the wave tank.

When the model reaches the critical safety limit
at the wave maker or the absorbers at the
opposite side of the tank, the ship and the
carriage stops automatically.

Thus, the test is realized by a deterministic
course of test events which allows a
reproducible correlation of wave excitation and
ship motion.

3. GENERATION OF TAILORED WAVE
SEQUENCES AND THEIR
CORRELATION TO SHIP MOTIONS

There is a wide range of outstanding methods
for the design and computer simulation of
rogue wave events. However, the wave
analysis techniques presented here serve as a
practical method for generating waves tailored
specifically for capsizing tests.

3.1. Wave generation

The wave generation process is illustrated in
Fig. 4 for a two flap wave maker.

1. The target position in time and space is
selected - for example the position where the
ship encounters the wave train at a given time.
At this location, the target wave train is
designed — either with chosen parameters or an
existing wave registration measured in a storm.
2. This wave train is transformed upstream to
the position of the wave maker.

3. The corresponding control signals are
calculated using adequate transfer functions of
the wave generator.

4. This control signal is used to generate the
specified wave train which is measured at the
selected position in the tank. The ship model
should arrive at the target position by the
corresponding target time (measured from the
beginning of the wave generation).

5. By registrations at the target position the
compliance with the target wave parameters are
validated.

On the basis of linear wave theory the specified
amplitude distribution of the target wave train
is given as Fourier spectrum | “Fwj, Xc) | .
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Combined with the related phase spectrum at
the concentration point x., (®;, Xc), we obtain
the un-scaled Fourier transform at x.:

| leti __i:r-__l, -y — iy

J‘T‘t:;b'j.ﬂ,'ej = |I~‘(UJI J’:ty:”ﬂfg} L= ub.lffii_ijc

(1)

with circular frequency wi= jA® as a function
of wave number k; , t; = iAt. The wave train is
scaled due to the desired maximum wave
elevation resulting in the Fourier transform
F(o;, xc) at X.. Adaptation of the phase
spectrum to the target location x; gives the
Fourier transform in x;:

i{w it .f|. I:.il‘, HH| :I:I

1"'1{;;4!5;. :'t';} — |.!'"{an. ;'t'(_:]|t7 {2]
For reducing the number of time steps until the
wave maker starts to operate, the wave train is
shifted by time tei:

IR SN

Flw;, xg) = Flw;.xg) - € (3)
Finally, this Fourier transform is multiplied by
the hydrodynamic RAO (relating main board
motion to wave elevation), the geometrical
RAO, and the hydraulic RAO for each wave
paddle. The geometric RAO assigns the paddle

motion for a single flap to both flaps:

Gox = Ty, (4

ook = (1 —|7|)owir. (5

T(A) = 1L, A<M (6

T(\) = L5e 00BAAT 05 ) = \g(T,
with Ag= 2 m.

3.2. Transient wave packets and tailored
wave sequences

A transient wave packet” is defined as a
special wave group consisting of subsequent
waves with increasing propagation speeds so
that all “components” meet in the so-called
concentration point before they diverge in
opposite order (Fig. 5). Transient waves for
model excitation have originally been proposed
by [7] and further developed by [17], [1], and
[2]. Transient wave packets are characterized
by well-defined periods and phase relations,
and are therefore predestined for capsizing tests
because they

* have a short extension and consequently a
small sensitivity with regard to disturbing
frequencies, course deviation etc.

* are tailored for the test purpose with given
geometric parameters like steep-ness at the
encounter area of ship and wave

* allow the modelling of very high and steep
wave combinations (freak or giant waves, see
[12])

* can be generated as defined extreme events in
a seaway (consideration of environment and
history) or as solitary wave groups meeting the
ship in parametric roll resonance motions
(caused by regular waves).

Even extreme wave events can be modelled in
the wave tank as shown in Fig. 6, which
presents the simulation of the New Year Wave
(which has been registered on January 1, 1995
by a down looking radar at the Draupner
platform in the Norwegian Ekofisk field, [18],
[9], [10]). Fig. 6 compares model test results
(scale 1:81) at our tank of the Technical
University Berlin (80 m long, 4m wide, water
depth 1.5 m) with the New Year Wave
registration. The measured wave train shows
quite a good agreement with the target wave.
This example demonstrates that the method is
also adequate for the realization of high natural
storm wave scenarios.
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Figure 4: Principle of the wave generation process. Calculation starts from the desired target
wave train.
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(concentration point).
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Figure 6: Draupner New Year Wave: Full scale data and wave tank generation (scale 1:81).

1. Let the registration of a wave train {(t;, X;) be
given at the wave tank location x;. The wave
train at another fixed location X1, kK € Zyg, is
calculated by shifting the Fourier transform’s
phase by k(xj:xk - x):

1 ‘ .
% Z F {;;Jj.;?‘.'jl {H]
i

F".[-’-'_l"'-:' 't"[m.'l.l.' Iy

Clti k) =

N Aw(9)

2. Let the registration be taken under constant
velocity vy = const. and encounter angle ¢
against the wave train. Thus the real wave
numbers can be calculated from the encounter
frequencies o, by solving

Wi = Wej + k(w;) - var - cos (10)

numerically. Then, the above procedure is
repeated.

3. For capsizing tests the undisturbed surface
elevation at a ship’s reference point is required.
As this wave elevation cannot be measured
directly it is calculated from a registration at
another (fixed or constantly moving) location
using the following scheme:

wij = wej +k(wy)  (11)
) L'.'l.f{ff]l $e0s "i:{ffj

. o 1 :
Ctmisn(t)) = 52D Flwym)
J
F'I.[J'I'ill'i. .ﬂ&r}&u_{lz:l

where Ax; stands for the time varying distance
between both locations.

Considering well-defined time windows during
the test and excluding disturbances within the
main signal, the described linear techniques can
be applied to all types of model seas as well.

For steep wave trains - e. g. ratio of wave
height to wave length is higher than 0.05 — the
wave propagates faster than the corresponding
linear wave. Furthermore, these waves show a
crest-trough asymmetry increasing with wave
height, and a mass transport in propagation
direction. To synthesize steeper waves (up to
freak waves) Kiihnlein [13] proposed a method
expanding the linear wave theory by evaluating
the equations of orbital motions at the
particles’ real position and introducing an
empirical term, which considers shallow water
effects. This approach is complemented by
introducing a wave packet description based on
Stokes-IIT wave theory [15].
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Figure 7: Registration of a wave packet at
stationary wave probes and at a moving probe
-comparison of calculation and registration

For a regular wave with circular frequency o,
amplitude C, in water depth d the velocity
potential and the surface elevation according to
linear wave theory are given by

Cag cosh|k(z + d})]
k sinh(kd)

C(t,x) = (,cos(f),

# = kr — wt

g is the acceleration due to gravity, t denotes
time, and (X, z) are space coordinates.

o(t,x,z) = sin(f), (13)

(14)

The particle velocities follow from the velocity
potential:

b oo -
T e TH— 9 (15)

From these velocities the particle elevations are
derived using the Lagrangian frame [6].

(19)

The expansion of the linear wave terms in (18)
and (19) at the real position of the respective
particle results in the surface elevation of a
higher wave. The corresponding trajectories are
not closed.

Since a higher wave propagates faster than a
smaller one the dispersion relation has to be
redefined. The wave number k follows from
the ratio of circular frequency and wave
celerity:

k=—.

(20)

C

The resulting phase velocity ¢ is the sum of
wave celerity ¢o = w/ky of a harmonic wave
with frequency ® (according to linear theory)
and a convective velocity at water surface u,=0.
This convection follows from the mass
transport in the direction of wave propagation.
Note that in the (closed) wave tank system a
reverse flow is observed in addition to
compensate for the convection mass flow [3], i.
e.



PN 8" International Conference on
ki the Stability of Ships and Ocean Vehicles

= ’ . . .
2003 Escuela Técnica Superior de Ingenieros Navales

449

C=Cp+ Uz=p — ﬂgr?.&" (21]

The added wvelocity u,=0 at the surface

(averaged over time) follows from

! 8 i
T T o .
g = f a7, 20, %) 4. (22)
il f;’:rmr

Similarly, we obtain the reverse current:

”ﬁff g = f / ﬁl: : ]I{’L.nt'f"' (EJJ
lend

Solution of equations (18) to (23) gives the
phase velocity ¢ and the particle trajectories
a(t; Xo, Zo) and y (t; Xo, zo) of a high regular
deep water wave with wave number k at each
time step t.

From the particle trajectories (Lagrangian
description) the surface elevation at o = X
(Eulerian description) is calculated by iteration
of:

Ct.x) = {770, 20)|T =1; (To, 20) (24)

(x = alr zg, 20), 2 = 0)}.

Hence, the description of non-linear waves
follows from the calculation of particle tracks
using the Lagrangian frame. As a result,
surface elevation is asymmetric, with steep
crests and flat troughs. In addition, the particle
paths are no longer closed as the orbital motion
is superimposed on the convective flow in the
direction of wave propagation.

Similar results follow from the Laplace
equation if non-linear surface boundary
conditions are introduced. If wave elevation
and velocity potential are expanded as power
series, with wave steepness kC, being a small
perturbation parameter, we obtain the Stokes

higher order solutions. In case of a 3rd order
Stokes wave the surface elevation results in
¢(t) =

%{kg]]{'ﬂhﬁ + [Frf-,a! cos 26(25)

+ i;[:kﬁrf}ﬂ{:m:iﬁj.

L8

The linear first term — the Airy wave — is
modulated by small higher order terms which
steepen the crest and induce a convective flow.

In case of a transient wave packet, the linear
term governs the propagation. Close to the
wave board, we register a long and low wave
train. Due to the small steepness a linear
description is justified, i. e. the surface
elevation can be expressed by

- (p ey L \ | ity of)
Guiti.ay) = o Z Flw;i, x)e it A (26)
j

in discrete form, with F as Fourier transform of
the linear wave train. The amplitude of the
harmonic wave is substituted by the envelope
a(tj) of a linear wave packet as in case of a
regular wave the amplitude is equivalent to the
envelope (a(t) C.). The wave packet
envelope is calculated by Hilbert transform:

alt;) qulm | Zf (wj, xp) - e'@its %3'}&.;}2.
(27)

Following the Stokes-III analogy, the surface
profile is expressed by

LMJ .
Z“*‘ (wj, )|t (28)

alt; ]R‘{
)

”L‘I i A [T ,\'\
j “'”L‘*"j'Jf.f_]|t72""~“ﬁfe bl

¢(ti) =

=

3 )
+ ga‘z:\fzjkliwljj . |I. (WI J‘ ]|t ;Tlu.-ll.' I'f-’
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with ¢ as phase spectrum of the linear wave
train.

Fig. 7 confirms the high accuracy using these
tools for non-linear calculation of the moving
frame wave train: The wave train (transient
wave packet) is measured at a stationary wave
probe close to the position of the wave maker
(x = 8.74 m) as well as at a down-—stream
position of the wave tank (x = 85.03 m).
Finally, the lower diagram presents the wave
train as registered on board of the towing
carriage  (mean  velocity  1.65  m/s).
Transformation of the first wave train to the
fixed down-stream position as well as to the
moving wave probe travelling with the carriage
is also shown. Agreement of registration and
calculation (dots) is satisfactory.

o

Figure 8: Investigated ship models and
corresponding ship lines (left: C-Box — model
scale 1:29 — right: RO-RO vessel — model scale
1:34).

4. RESULTS

In the framework of the ROLL-S project 100
analyzable capsizing test runs have been
realized varying the following test parameters:

* metacentric height
* model velocity

* target course

* type of model sea

* characteristic wave period and height
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Figure 10: Parametric excitation of the RO-RO Figure 11: Broaching of the RO-RO vessel
vessel at GM = 1.36 m, v = 8 kn, at regular (GM=1.36 m, v = 15 kn, Z-manoeuvre at

head seas, A/Ly, = 1.2 mand H=10.2 m. u =+ 10°) with subsequent capsizing in harsh
seas (Tp=14.6 s, Hs = 15.3 m).
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1 =220s t =200 s

t=290s

Figure 13: RO-RO vessel in a severe model storm (compare Fig. 11) — model scale 1:34.

Two ships — built by Flensburg Shipyard —
have been investigated here:

* a multipurpose container vessel (C-Box) with
Ly, =145.75 m, B =23.60 m, T = 9.00 m, and
Cg =0.7395 (model scale 1:29), and

* a RO-RO vessel with Ly, =182.39 m, B
=26.00 m, T =5.70 m, and Cg = 0.5686 (model
scale 1:34).

The models are self-propelled - the C-Box with
one, the RO-RO vessel with two propulsion
systems, which are controlled via telemetry by
the master computer at the towing carriage

(Fig. 8).

The application of the proposed experimental
procedure is demonstrated in the following
model tests. Fig. 9 shows test results for the C-
Box measured in a regular wave from astern
followed by a high transient wave packet. Note
that a highly sophisticated wave generation
technique is required to obtain such an
apparently simple wave train at ship centre
(moving frame) (see wave registration close to
main board). Ship motions at all degrees of
freedom have been registered optically -
position, roll, pitch, course, and rudder angle
are given here. This test case illustrates the

advantage of using tailored wave sequences:
the ship behaves inconspicuously until it
encounters the high transient wave. Thus, the
ship behaviour can be clearly related to the
wave sequence.

Fig. 10 and 12 illustrate the ship motion
characteristics (GM=1.36 m, natural roll period
Tr = 19.2s, v =8 kn) in high regular head seas
(H=102m, A =218 m, T = 11.8 s), with a
target course angle of u = 177°. During the first
half of the test duration roll motion is
inconspicuous (see photos in Fig. 12 at model
time t = 220 s). Suddenly, beginning at model
time t = 240 s parametric rolling with twice the
wave encounter period is starting, with
increasing roll angles up to critical values of 40
degrees (see Fig. 12: photos at model time t =
260 s and t = 290 s). Note that the pitch
motions remain rather mode-rate.

Fig. 11 and 13 present model test results of a
RO-RO vessel (GM=1.36 m, natural roll period
Tr=19.2 s, v=15 kn) in extremely high seas
from astern (ITTC spectrum with Hs=15.3 m,
Tp =14.6 s, Z-manoeuvre: target course p = +
10°).
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The upper diagram presents the registration at a
stationary wave probe. As the waves are quite
high the associated crests are short and steep
followed by at and long troughs. In contrast,
the cruising ship — see wave elevation at ship
centre (moving frame)— apparently experiences
extremely long crests and short troughs with
periods well above 20 s as the vessel is surfing
on top of the waves.

Consequently, the ship broaches, and finally
capsizes as the vessel roll exceeds 40° and the
course becomes uncontrollable (Fig. 13).

Note that the wave elevation refers to the
moving frame at the centre position of the
cruising ship, and can be directly correlated to
the ship motions by magnitude and phase. As a
consequence, the sea-keeping behaviour and
even the mechanism of capsizing can be
deduced and explained on the basis of non-
linear cause-effect chains.

A large variety of model tests simulating
different dangerous scenarios have been

Roll angle < 35°

GM =2.8m
T=5.75m

limiting significant
wave height
™
11.0D
12,00
1A
an
12.0D0
J.0D0
2.0
Fonn
B_ULU

3.0D0

Sign. wave length = ship length
Simulated time: 5*10000s each

performed for the wvalidation of numerical
models, which are directly used to improve
ship design and operation.

For bench-marking, the non-linear numerical
methods are validated by dedicated sea-keeping
model tests in deterministic wave sequences.
By systematic simulations the most critical
conditions are identified [4], [5]. As an
example, Fig. 14 shows polar plots for two
different load cases which illustrate at which
course and speed the RO-RO ship is cruising
safely (limiting roll angle 35°).

Based on these developments methodologies
for the quantitative assessment of capsizing
risk are proposed which then provide a basis
for the improvement of current intact stability
criteria. In conclusion ships are designed with
improved sea-keeping characteristics and an
increased safety with respect to the danger of
extreme roll angles and capsizing. As a
consequence, evaluation methods for capsizing
risks are developed, and stability criteria
improved.

Roll angle < 35°

GM = 1.8m
T =5.75m

following =ea

Figure 14: Polar plot with limiting wave heights for a RO-RO design - based on non-linear

calculation methods.
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5. CONCLUSIONS

The proposed accurate computer controlled
sea-keeping test procedure is based on linear
wave theory which is expanded by empirical
procedures to consider the higher phase
velocity of steep waves as well as their
asymmetry. The backbone of the new model
testing technique is the generation of
deterministic wave trains with embedded
extremely high waves or wave groups which
interact with the cruising ship at selected
positions in the wave tank. From registrations
and numerical calculations the wave field is
known in space and time. In particular, the
wave elevation at the ship centre, as related to
the cruising vessel (encountering periods —
moving frame) is deduced. As the associated
ship motions are registered simultaneously,
cause-effect relations can be evaluated,
revealing the mechanism of the genesis of large
roll motions (incl. parametric rolling) and
capsizing. As a consequence, the sea-keeping
behaviour and even the mechanism of
capsizing can be evaluated on the basis of non-
linear cause and effect chains since the
methods for generating and analyzing tailored
wave trains allow calculations of the measured
wave train in terms of a moving reference
frame of the ship. Based on systematic
experimental tests of the type presented here a
non-linear numerical method for simulating
ship motions in extreme seas has been
developed. With this program polar plots are
determined presenting limiting wave heights
for the capsizing of a vessel depending on its
speed and course. The assessment of the sea-
keeping behaviour of a floating structure
requires a highly complex procedure
combining non-linear numerical simulation
methods validated by deterministic sea-keeping
tests. As a result, safer ships can be designed
and loading and cruising conditions optimized,
improving ship operation and navigation
significantly.
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